Beam hardening: analytical considerations of the effective attenuation coefficient of X-ray tomography.
نویسندگان
چکیده
Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water.
منابع مشابه
Validation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners
Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...
متن کاملMulti-Material Beam Hardening Correction(MMBHC) in Computed Tomography
In computed tomography (CT), the nonlinear attenuation characteristics of polychromatic X-rays cause beam hardening artifacts in the reconstructed images. State-of-theart methods to correct the beam hardening effect are mostly single material precorrections (e.g. water-precorrection), which are far less efficient when more than one material is present in the field of measurement. The use of tho...
متن کاملSegmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.
This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissu...
متن کاملAnalytical Corrections for Beam-hardening and Object Scatter in Volumetric Computed Tomography Systems
The advent of the use of digital area detectors in Volumetric Computed Tomography (VCT) systems has brought with it the challenges of achieving image quality comparable to that provided by earlier planar industrial CT systems equipped with highly collimated and efficient linear detector arrays. Particularly for imaging with higher voltage x-ray sources up to 450kVp, among the most distinct imag...
متن کاملAn Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams
Background: In this study, a method for linear attenuation coefficient calculation was introduced.Methods: Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury.Results: The values...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2007